Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis.
نویسندگان
چکیده
Phosphate (Pi) is a macronutrient that is essential for plant growth and development. However, the low mobility of Pi impedes uptake, thus reducing availability. Accordingly, plants have developed physiological strategies to cope with low Pi availability. Here, we report that the characteristic Arabidopsis thaliana Pi starvation responses are in part dependent on the activity of the nuclear growth-repressing DELLA proteins (DELLAs), core components of the gibberellin (GA)-signaling pathway. We first show that multiple shoot and root Pi starvation responses can be repressed by exogenous GA or by mutations conferring a substantial reduction in DELLA function. In contrast, mutants having enhanced DELLA function exhibit enhanced Pi starvation responses. We also show that Pi deficiency promotes the accumulation of a green fluorescent protein-tagged DELLA (GFP-RGA [repressor of ga1-3]) in root cell nuclei. In further experiments, we show that Pi starvation causes a decrease in the level of bioactive GA and associated changes in the levels of gene transcripts encoding enzymes of GA metabolism. Finally, we show that the GA-DELLA system regulates the increased root hair length that is characteristic of Pi starvation. In conclusion, our results indicate that DELLA-mediated signaling contributes to the anthocyanin accumulation and root architecture changes characteristic of Pi starvation responses, but do not regulate Pi starvation-induced changes in Pi uptake efficiency or the accumulation of selected Pi starvation-responsive gene transcripts. Pi starvation causes a reduction in bioactive GA level, which, in turn, causes DELLA accumulation, thus modulating several adaptively significant plant Pi starvation responses.
منابع مشابه
Strigolactone Regulates Anthocyanin Accumulation, Acid Phosphatases Production and Plant Growth under Low Phosphate Condition in Arabidopsis
Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi) in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL) signalin...
متن کاملProteolysis-Independent Downregulation of DELLA Repression in Arabidopsis by the Gibberellin Receptor GIBBERELLIN INSENSITIVE DWARF1 W
This article presents evidence that DELLA repression of gibberellin (GA) signaling is relieved both by proteolysis-dependent and -independent pathways in Arabidopsis thaliana. DELLA proteins are negative regulators of GA responses, including seed germination, stem elongation, and fertility. GA stimulates GA responses by causing DELLA repressor degradation via the ubiquitin-proteasome pathway. D...
متن کاملWRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis.
Phosphate (Pi) deficiency limits plant growth and development, resulting in adaptive stress responses. Among the molecular determinants of Pi stress responses, transcription factors play a critical role in regulating adaptive mechanisms. WRKY75 is one of several transcription factors induced during Pi deprivation. In this study, we evaluated the role of the WRKY75 transcription factor in regula...
متن کاملAttenuation of phosphate starvation responses by phosphite in Arabidopsis.
When inorganic phosphate is limiting, Arabidopsis has the facultative ability to metabolize exogenous nucleic acid substrates, which we utilized previously to identify insensitive phosphate starvation response mutants in a conditional genetic screen. In this study, we examined the effect of the phosphate analog, phosphite (Phi), on molecular and morphological responses to phosphate starvation. ...
متن کاملIdentification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana.
One of the responses of plants to low sources of external phosphorus (P) is to modify root architecture. In Arabidopsis thaliana plantlets grown on low P, the primary root length (PRL) is reduced whereas lateral root growth is promoted. By using the Bay-0 x Shahdara recombinant inbred line (RIL) population, we have mapped three quantitative trait loci (QTL) involved in the root growth response ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 145 4 شماره
صفحات -
تاریخ انتشار 2007